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ABSTRACT

Deciding what fingerings to use is a core skill for accom-
plished pianists. We model piano fingering decisions with
conditional random fields, demonstrating the power and
flexibility of this approach to produce results to compete
with the state of the art. We present new corpora of finger-
ing data, compiled from professional pianists and editorial
scores. We analyze recently suggested metrics for evalu-
ating fingering systems and discuss drawbacks in their ap-
plication to models that do not assume segregation of hand
assignments.

1. INTRODUCTION

Deciding what fingerings to use is a core skill for accom-
plished pianists. However, most scores contain at best only
sparse fingering annotation, and many scores provide no
fingering suggestions at all. With the explosion of freely
available sources of machine-readable music (as on the
popular MuseScore 1 site, which as of this writing boasts
over one million such digital scores for piano), automated
systems to generate fingering advice promise to help pi-
anists better prepare pieces for performance. An overview
of the problem is provided in Figure 1.

The use of hidden Markov models (HMMs) as a method
for modeling piano fingering decisions has been well-studied.
In 2007, Yonebayashi and colleagues [4] suggest HMMs
for melodic passages. Five years later, Nakamura et al.
[5] expand this approach, merging HMM output for poly-
phonic music. This work has culminated recently with the
application of higher-order HMMs to lay explicit claim to
the state of the art in the domain [6], while at the same time
suggesting upper limits for the HMM approach.

As HMMs are generative models, their formalism includes
emission probabilities of the underlying sequence of notes.
HMMs try to model the entire process of generating music,
which likely overestimates the role a series of fingering de-
cisions might have in giving rise to a series of notes. Since
we are fundamentally interested only in inferring the most
likely fingering sequence, much of the machinery of the

1 https://musescore.com
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Figure 1. Overview of the piano fingering problem. Cred-
its: Inspired by [1], with keyboard by [2] and hand by [3].

HMM seems to be non-productive. The sequence of notes
is a given. This suggests that a more direct (discriminative)
approach may produce improved results.

The most popular discriminative models are conditional
random fields (CRFs). CRFs are undirected graphical mod-
els, which means reasoning about any point in a sequence
of events (notes) is not constrained to a fixed number of
preceding events, as is a limitation with HMMs. Indeed,
CRFs implicitly support unlimited long-distance dependen-
cies between the observed (note) states: Feature functions
for any note may include features from literally any other
note in a sequence. CRFs offer access similar to that pro-
vided by HMMs to hidden (fingering) states. Higher order
CRFs, at additional computational cost, also allow func-
tions to consider speculative fingerings of remote notes.
This flexibility holds great promise for a rich variety of
CRF models.

We here describe the first application of a CRF model to
the piano fingering problem and compare its performance
to the latest HMM model described in the literature [6].
We also highlight subtle limitations for evaluating system
performance using match rates [6].

2. APPROACH

CRFs are often described as logistic regression for sequen-
tial data. In its most general form, the CRF looks to max-
imize P (y|X), the conditional probability of a label (fin-
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gering) sequence y, given an observed sequence of events
(notes) X, like so:

P (y|X) =
1

z
exp

(
N∑
i=1

F (X,y, i)

)
, (1)

where N is the length of the sequence, z is a normalizing
constant, and

F (X,y, i) =

J∑
j=1

wjfj(X,yi
i−k, i), (2)

where J is the number feature functions f .
More specifically and pragmatically, a kth-order linear

chain CRF looks to maximize P (y|X) by reasoning about
all observed events, but it considers labels from only the
prior k events encountered. Formally,

P (y|X) =
1

z
exp

(
N∑
i=1

F (X,yi
i−k, i)

)
, (3)

where N is the length of the sequence, z is a normalizing
constant,

F (X,yi
i−k, i) =

∑
j

wjfj(X,yi
i−k, i) (4)

sums the weighted feature functions f defined for the model,
j ranges over the number of feature functions, and k is a
constant defining the order of the model.

In the most common “linear chain” CRF, k = 1, and fea-
ture functions are restricted to examining only the current
and previous labels in the training example. Higher order
models allow the consideration of additional elements in y,
at the cost of more computing time. The machine learning
task is to infer the optimal set of weights w, applying some
type of gradient descent. In this study, we consider first-
order linear chain CRFs, defined formally as maximizing

P (y|X) =
1

z
exp

(
N∑
i=1

F (X, yi, yi−1, i)

)
, (5)

where N is the length of the sequence, z is a normalizing
constant, and

F (X, yi, yi−1, i) =
∑
j

wjfj(X, yi, yi−1, i). (6)

3. FEATURES

All features are defined exclusively in terms of the ob-
served note sequence attributes X. We implement features
related to a variety of performance and musical attributes,
with some (highlighted in boldface type) making their first
appearance in the literature:

• physical distances between keyboard keys

• concurrent notes

• segment boundaries

Figure 2. Visualization of lattice distance measure recom-
mended by Nakamura and associates [6].

• black key usage

• dynamics

• articulation

• temporal constraints

• note repetition

3.1 Distance Features

We adopt the “lattice distance” measure between notes rec-
ommended by Nakamura et al. [6], which includes both a
horizontal and vertical component. (See Figure 2.) Moving
horizontally from the center of any key, one unit of distance
is added when reaching the center of a white key or a gap
between two white keys. Vertically, one unit is recorded
if the transition is to a differently colored key. Distances
are positive moving right or up and negative moving left or
down. We maintain the measures separately. (We do not
attempt to combine the x and y dimensions, though this
might be done to achieve a single estimate of physical dis-
tance.) We also institute their recommended cap on a max-
imum absolute horizontal “leap” distance between notes.
At some point, the hand must be radically re-positioned,
and the specific magnitude of this move is irrelevant; track-
ing the exact magnitude of the move becomes noise to the
model. We therefore institute a ceiling on the horizontal
distance of 15 units, slightly more than an octave.

For a given note in a sequence, we capture both horizon-
tal and vertical distances between it and each of the three
notes preceding and following it, for a total of 12 numer-
ical features per note. We then concatenate the horizon-
tal distances within three-, five-, and seven-note envelopes
centered on the current note to define three categorical “n-
gram” features, which we speculate will capture more ex-
plicitly the contour of notes in the neighborhood.

We also capture whether a leap, as defined above, has
been detected between the current and previous note.

In passing, we observe that using pitches and pitch n-
grams directly, as is often seen done with words in super-
ficially similar natural language processing tasks, appears
less effective here. The n-grams might be at a disadvan-
tage compared to using a distance measure, as they provide
fewer opportunities to learn from isomorphic situations (or
“transposition symmetries,” as Nakamura et al. might call
them).



3.2 Concurrency Features

We implement code to detect that one or more note onsets
are coincident with the current note—that is, that a chord
has been struck. Specifically, we add one function to count
the number of coincident note attacks with pitches lower
than the pitch at index i and one to count notes with higher
pitches. Concurrency is detected for each function when
the onset times are within 30 ms of the indexed note, a
quantization value established empirically [12] and applied
previously by Nakamura and associates [6]. These higher
and lower note counts are concatenated along with the staff
name into a categorical feature.

As we impose a total order for sequences that sorts first by
temporal order and then by ascending pitch, notes involved
in a chord require fingers that follow the order of notes
(ascending for the right hand and descending for the left).

We also institute a feature to detect a chord border. If ei-
ther of the two upper or lower coincident attack count are
zero and the other is not, we flag a chord border. We per-
form similar actions to detect overlapping notes based on
note release times, contemplating a more general “vertical
cost” suggested by Al Kasimi et al. in 2007 [13]. We as-
semble counts of notes higher and lower than the current
note that overlap its attack by more than 30 ms. Assuming
no damper pedal is in use, this should convey constraints
on fingering choice for moving notes.

3.3 Segment Boundary Features

These are simple features to indicate the beginning and end
of a note sequence.

3.4 Black Key Features

We include three boolean unigram features to indicate if
the current, preceding, and following notes are on black
keys and a trigram categorical feature that concatenates the
contour of black keys within this envelope.

3.5 Dynamic Features

How hard a key needs to be struck can affect fingering
choices. We therefore include the MIDI velocity number
of the current note as a feature. Including n-gram veloc-
ity features are likely also viable, but meaningful data with
high variance is lacking for dynamics in the datasets cur-
rently available. To our knowledge, this is the first appli-
cation of such a feature in the literature.

3.6 Articulation Features

Many expert systems have constrained their models to as-
sume all notes are played finger legato, in a smooth con-
nected way. Such playing emphasizes fast in-position fin-
ger transitions and pivots crossing fingers over and under
the thumb. As we aim for more general predictive power,
we attempt to define and to quantify legato and staccato
articulation in our features.

From a segregated fingering standpoint at least, staccato
is a purely melodic phenomenon. We are looking to cap-
ture when finger order does not align with note order (where

pivoting occurs without the thumb). When chords are sound-
ing, the hand is anchored and is not free to perform such
feats. Therefore, we look for a melodic window around the
note and calculate measures of separation between notes
within the window. The three articulation features captured
at every sequence position are defined as follows:

• Staccato count: the number of notes in the 9-note
window surrounding the current note that are fol-
lowed by silence at least half as long as the note itself

• Normalized silence: the sum of inter-note silence
surrounding the current note, divided by the total
duration of the 9-note window, measured from the
leftmost note onset to the rightmost onset

• Separated note count: the number of notes surround-
ing the current note that are separated by at least 60
milliseconds

This is the first explicit use of this type of performance
data among published models.

3.7 Temporal Features

In another first, we capture three continuous features to
estimate the rate of passing notes at a given point in the
sequence. This is not an inference of an overall tempo
marking in a score like Allegro or Andante or a metronome
marking, though we do consider metronome changes de-
tected in the music21 representation, as these changes af-
fect attack times and note duration. We simply calculate
the rate of note attacks per second for the five notes prior
to and including the current note. Then we repeat this for
future notes, and finally throughout the entire 9-note win-
dow. (When playing a 64th-note run, a pianist is perhaps
less convinced of the slowness of a Larghissimo piece. The
marked tempo of a piece is an indication of pulse and not
necessarily the rate of sounding notes.)

3.8 Repetition Features

Finally, we record how many times the same note has been
struck immediately before and after the current note in the
sequence.

4. CORPUS DEVELOPMENT

In this section, we introduce two new corpora created for
the piano fingering task and a previously existing corpus
we have transformed for our use here.

All pieces included in the new corpora are segmented
into phrases and are made freely available for use by other
researchers at https://github.com/dvdrndlph/
didactyl. Note that phrase segmentation information is
not leveraged by the CRF models that are the focus of this
paper.

4.1 The Layer One Corpus

We present a new corpus based on six popular intermedi-
ate sonatinas written by Muzio Clementi (Opus 36) circa
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1797, noted for their progressively difficulty. The avail-
ability of MusicXML transcriptions of these works at Mus-
eScore [14] and the xml2abc utility [15] simplified the task
of creating high-quality scores in the abc format preferred
by the abcDE editor [16], which we elected to use for an-
notation. For convenience, we divided each sonatina man-
ually into smaller pieces: each section demarcated by dou-
ble bar-lines was assigned to a separate file. This left us
with 27 distinct files in the corpus.

The five editorial scores with fingerings [17–21] are found
in the public domain and are readily available on IMSLP
[22], along with the fingerings proposed by the composer
[23], provided easy access to (albeit incomplete) expert fin-
gering data. Using abcDE, we captured these data in a set
of abcD files. Through this activity, several obvious errors
were corrected in the note transcriptions.

4.1.1 Annotating Phrases

In their work on stringed instrument fingering, Radicioni
et al. [24] argue convincingly that segmented (localized)
fingering solutions lead to improved global solutions. Cit-
ing [25–27], they stress that “expressive aspects of perfor-
mance descend from the performer’s analysis of musical
[structure],” especially phrases, and that fingering is one
such aspect. Since many piano fingering models focus ex-
clusively on melodic passages, and automatic phrase seg-
mentation remains an open problem, we elected to include
explicit phrase separation in the Layer One corpus. This
is the same approach employed by Radicioni and asso-
ciates [24], allowing phrase segmentation to be provided
as an additional input to fingering models.

Our two pianist collaborators agree that this “divide-and-
conquer” technique is familiar and natural: pieces are seg-
mented into phrases, and the phrases are fingered individu-
ally, more or less in isolation. Admittedly, how they inter-
nalize the definition of phrase is fraught, but musicians do
use this term as if it were broadly understood. Conductors
certainly use it, and rehearsals rarely devolve into semantic
arguments.

Clearly, there may be considerable variability in where
different pianists, accustomed to a high degree of auton-
omy in such matters, draw the lines between segments,
likely reflecting tension between conflicting definitions (re-
lating to prosody, affect, or basic sectioning), among other
factors. All of which provides further motivation to include
phrasing information as part of the corpora. For now, a
phrase, as we discuss in Section 4.1.2 below, is whatever
our collaborating pianists agree it is.

4.1.2 Phrase Agreement Experiment

We asked two advanced pianists (both of whom have ad-
vanced degrees in piano performance and over 20 years
of professional experience teaching and playing piano) to
segment five sections from Clementi’s Six Sonatinas (Op.
36) into phrases. Our pianists agreed before doing the
segmentation work that these pieces should have “obvious
phrase boundaries.” Specifically, we used sections ending
at the first double-bar line in Sonatinas 2–6. The pianists
were provided very simple annotation guidelines:

Mark the notes that end complete musical thoughts,
typically supported by the presence of a ca-
dence. Each voice in a piano score will have
its own independent phrasing.

Prior to annotating the five selections, the pianists actually
annotated two sections from Sonatina 1. Disagreements
were discussed, and perfect consensus was achieved. Over
the five test selections, however, we have mixed results.
The task amounts to binary labeling of each note as mark-
ing the end of a phrase or not. For the upper staff notes,
we see excellent agreement: on 1255 of 1262 notes, our
pianists apply the same label (Cohen’s κ ≈ 0.879). For
the lower staff, however, the agreement is less substantial:
914 of 945 notes (κ ≈ 0.410). After analyzing the dis-
crepancies, we concluded that voice independence was in-
terpreted differently by the annotators. To encourage bet-
ter agreement, we modified our guidelines to be more nu-
anced:

The primary task is to demarcate phrases in
the score. Mark the notes that end complete
musical thoughts, typically supported by the
presence of a cadence.

Each voice in a piano score may have its own
independent phrasing. However, when a lower
voice is accompanying an upper voice, the lower
will typically end a phrase around the same
time as the upper, coordinating to create the
sense of cadence. Pay special attention when
deviating from this general rule. . . .

But this did not help agreement in the lower staff over our
test set. Since Radicioni and associates [24] present their
ideas in the context of unaccompanied melodic lines and
do not discuss phrasing in a homophonic context, it may be
that such accompanying voices that frequent the lower staff
of piano scores are less amenable to phrase segmentation.

4.1.3 Layer One Corpus Summary

In sum, we have partial fingering data for the first sections
of all six sonatinas (the “Layer One” corpus) from six dif-
ferent editorial sources and complete fingering from six
professional pianists for these same selections. All sec-
tions include phrase segmentation, which may be used as
features or even alternative experimental units.

Only the completely annotated examples, elements in the
“Layer One Full” (L1full) subset, are usable in the experi-
ments described below.

4.2 The Beringer Corpus

After transcribing numerous exercises from Beringer and
Dunhill’s Manual of Scales, Arpeggios, and Broken Chords
for Pianoforte [28] to abc format, we used the abcDE an-
notation editor [16] to record all of Beringer’s suggested
fingerings, including alternates, in abcDF format. Since
such technical exercises form a large part of the daily prac-
tice regimen of many pianists, it seems logical to have such
standard fingerings on hand to train various models. A



good model should presumably practice the way humans
do.

All exercises, except chromatic scales, are included for
both hands and in all 12 keys. Three major scale exercises
(2088 notes total), three harmonic minor scales (2088),
six melodic minor scales (4176), one major arpeggio ex-
ercise (936), one minor arpeggio (936), one major bro-
ken chord exercise (768), and one minor chord (768) are
present, along with two chromatic scales (100). This to-
tals 11,860 notes over 194 exercises. All exercises are seg-
mented into phrases, segments clearly signaled in the score
with double bar lines.

We observe that not all notes are explicitly annotated by
Beringer. However, the assumed editorial and pedagogical
intent is to specify the fingerings of each exercise com-
pletely and unambiguously. To confirm that annotations
are only removed to reduce clutter and introduce no am-
biguity, we asked two experienced pianists to provide the
missing fingerings, which they did with perfect agreement.

4.3 The PIG Dataset

Nakamura et al. [6] have released a large corpus known
as the PIG Dataset. 2 Composed of opening fragments
from 150 intermediate and advanced works from the stan-
dard piano repertoire. It defines a special test set of 10
selections each by Bach, Mozart, and Chopin, represent-
ing the Baroque, Classical, and Romantic periods of West-
ern music. Each selection in the test set is associated with
fingering sequences from four (Bach), five (Chopin), or
six (Mozart) different pianists. The remaining selections,
comprising the putative training set, come from a variety
of composers and are annotated by one or two different
pianists.

They leverage this corpus to stake a claim for their third-
order HMM as the state of the art. This is a significant
milestone, as we finally have sufficiently large corpora to
make such claims reasonable and defensible. It seems likely
to become standard practice for new models to describe
how they perform with respect to this corpus and in terms
of the evaluation metrics Nakamura and associates have
put forward. We have already seen this for models from
Guan and associates [29, 30].

5. EXPERIMENTS

5.1 Implementation

We implement our first-order linear chain CRF model lever-
aging the sklearn-crfsuite Python module [7], training via
its lbfgs limited-memory approximation of the Broyden-
Fletcher-Goldfarb-Shanno algorithm [8–11]. For the ini-
tial experiments described here, we accept all default hy-
perparameter settings for lbfgs (c1 = 0, c2 = 1, ε = 10−5,
δ = 10−5, and period = 10). We perform no hyperparam-
eter optimization or feature selection preprocessing. All
specific features described in 3 below are included in the
model and are weighted exclusively by the lbfgs training

2 Available at https://beam.kisarazu.ac.jp/˜saito/
research/PianoFingeringDataset/.

algorithm. By skipping these steps, we establish a lower
bound for the performance of the CRF approach.

To optimize performance, sklearn-crfsuite does not sup-
port true feature functions of both X and y values. Instead,
it combines each feature with all possible tag (fingering)
transitions to form its fully constituted feature functions.
That is, fj(X, yi, yi−1, i) are rendered internally as con-
junctions of independent functions of X and yi

i−1:

F (X,yi
i−1, i) ∼

∑
j

[
wjfj(X, i)

∏
t

∏
u

gt,u(y
i
i−1, i)

]
,

(7)
where t and u range over the set of possible tags and gt,u
is a binary indicator function for when both tags t and u
appear sequentially (when yi−1 = t and yi = u).

5.2 Methodology

Except for evaluations performed with PIG test data, we
perform five-fold cross-validation of our CRF model using
various subsets of the corpora described above. Specifi-
cally, each subset is partitioned into five random folds of
data, grouped to ensure that no data from the same musi-
cal piece is included in more than one fold. This is done
to avoid over-fitting, as even having fragments from one
piece in both training and test sets can artificially inflate
estimates of model performance, given the repetitive na-
ture of music. Since this procedure almost certainly pro-
duces unbalanced folds in terms of note counts, we calcu-
late weighted averages of the various metrics used. (This
grouping naturally occurs if and only if exactly one ground
truth is provided, and the unit to be evaluated is an en-
tire piece. However, we adopt this as a standard practice,
generally applicable to both complete and more granularly
segmented data, with any number of annotators.) Cross-
validation is used to reduce variance in model evaluation.

We use scikit-learn’s KGroupFold method to split the
data into five groups. Because this method does not sup-
port random seeding, we randomly order each subset be-
fore splitting to minimize any dependencies between ex-
amples. In turn, each group is held out, the model is trained
with the remaining data, and it is evaluated over the held-
out data. We calculate total accuracy and F1 score (at the
note level) and report the weighted average of the results
for each fold.

We also apply three of the match rates suggested by Naka-
mura et al. [6] in two different ways. They define a “match
rate” for a score (or “ground truth”) as simply “the frac-
tion of notes for which the estimated fingerings are cor-
rect.” They say the “general match rate” (Mgen) repre-
sents “how closely an estimate agrees with all the ground
truths,” which must imply an average match rate across all
ground truths. We further infer that Mgen for an entire set
of scores, must be an average of these averages. Weighting
this average by the number of notes in each score would
allso seem to be appropriate, but it is unclear if this is done
in the results reported in the original paper. Both weighted
and unweighted M scores are reported here.

Nakamura et al. [6] also suggest a “highest match rate”
(Mhigh) measure, which accepts the maximum match rate
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seen for any ground truth, and a “soft-match rate” (Msoft)
measure, which gives credit for a match if a predicted fin-
ger matches any ground truth. Neither of these measures
are averages at the score level, but they too are potentially
subject to weighting when they are averaged to generate a
score for an entire data set.

The results of these experiments are summarized in Table
1, which also provides size estimates for the data subsets.
Segments actually reflect the channel or staff separation,
which is available in both symbolic and most MIDI rep-
resentations of piano music. For our purposes here, there
are two segments in each score. Each Tag represents an
annotated note. (If there are 10 notes in each segment
and three different pianists providing annotations, this one
score would contribute 60 tags to the dataset.)

5.3 New Corpus Experiments

Our initial experiments involve working with our own cor-
pora. Notable is the model’s good performance with the
“rudimentary” subsets of the Beringer corpus. It is grat-
ifying to see the model is able to predict long-accepted
standard fingerings reasonably well. Its struggles with the
L1full subset are disappointing, but perhaps understandable
considering the diversity of fingering advice across the cor-
pus. The model receives as many mixed messages in train-
ing as it does in testing. We also note an unexpectedly large
number of non-default fingerings in the corpus.

The most noteworthy result here is how combining the
rudiments from Beringer corpora with L1full data produced
results very close to the higher performing rudimentary
corpus. Unweighted Mgen for L1full data and rudiments
together is over 29 points higher than that for L1full alone.
Some of this gain is attributable to the higher number, and
shorter length, of rudimentary segments in the data set,
but when segment length is controlled for in the weighted
Mgen score, the increase is still 24 points. This seems
to indicate that the CRF model is capable of generalizing
what it learns from the rudiments to the more musical ex-
amples in the combined data set. This should be gratifying
to piano teachers who have long preached the value prac-
ticing scales and arpeggios. If replicable, this result could
also have profound effects on how future models should be
trained.

Encouraged by these results, we proceed to test our model’s
performance over larger and more diverse datasets.

5.4 PIG Dataset Experiments

5.4.1 PIG Data Transformation

Our CRF model is built on top of Pydactyl [32], which
makes heavy use of the music21 Python module [33] and
leverages its highly refined score representation of music.

Each PIG dataset file, on the other hand, is a text-based
“piano roll representation,” with highly granular note-on
and note-off timestamps, measured in seconds from the
beginning of the piece. While it seems none of the event
data is from an actual human performance (given the iden-
tical note onsets for notes in chords), it is still impossible
for music21 to interpret such a file without loss of fidelity.

The shortest note in music21 is a 1/2048th note, but this has
only a relative relationship to actual duration in seconds.

Another issue is the ordering of notes in PIG files. The
events are sorted by note onset time, but there is no appar-
ent secondary sorting elements. The order of notes from
left-to-right through time and then from low-to-high by
pitch is essential to how abcD keeps fingerings aligned
with notes. Therefore, it is necessary to impose this total
order requirement and accept some deviations in the exact
timing of notes when transforming PIG files to abcD.

We have developed reliable code to perform this trans-
form with help from the Mido Python package [34], and
an implementation for the opposite transformation, from
abcD to PIG format, is forthcoming, as we hope to maxi-
mize interoperability.

5.4.2 PIG Training Set Experiment

Our first PIG experiment is simply to run five-fold cross-
validation across the training subset of the PIG Dataset.
This demonstrates a weighted mean fold accuracy of 66.88%,
a mean fold F1 score of 66.18%, and a weighted and un-
weighted Mgen scores of 67.07% and 66.40%, respectively.
This is encouraging, as the published Mgen result from
Nakamura et al. [6] is 64.5% for their third-order HMM.
Complete results are in Table 1.

5.4.3 PIG Dataset Experiments

We train our model with the PIG training data and evalu-
ate it with the PIG Test data, as is done by Nakamura and
associates [6]. This is to allow a head-to-head compari-
son of the performance of the two models. The results,
summarized in Table 2, are mixed. While the CRF holds
a slim advantage per the weighted and unweighted Mgen

measures, the HMM holds advantages between 0.004 and
0.025 according to the other, more relaxed, metrics.

We also performed five-fold cross-validation following
the over the entire PIG Dataset and finally over all available
data. The additional data produces markedly better results,
with advantages between 3.2 and 9.5 percentage points for
every metric, as seen at the bottom of Table 1. This sug-
gests additional training remains beneficial. However, a
final model trained with all data except the PIG test data
and evaluated with same produced slightly degraded per-
formance (of less than one point for each metric reported
in Figure 1.)

6. DISCUSSION

There seems to be a significant flaw in the application of
match rates to the PIG Dataset. The piano fingering prob-
lem is typically framed as the assignment of fingerings to
notes in a printed score, the symbolic representation of the
notes that are to be performed. Granted, this is not the
only way to define the problem, but it is clearly the one
that is applicable to the repertoire represented in the PIG
Dataset. The problem relates to channel separation—how
a note assigned to a staff. The convention within PIG is
always to assign a channel/staff that is consistent with the
finger used to play the note. This may seem reasonable,
since they are not processing (machine-readable) symbolic



Data Set Segments Tags

Weighted Fold Means

Accuracy F1

Unweighted Weighted

Mgen Mhigh Msoft Mgen Mhigh Msoft

Scale 164 18870 0.6916 0.6913 0.7074 0.7346 0.7518 0.7014 0.7229 0.7390
Arpeggio 124 6344 0.8584 0.8579 0.8767 0.8798 0.8833 0.8818 0.8843 0.8879

Broken Chord 76 2432 0.8549 0.8547 0.8741 0.9285 0.9668 0.8741 0.9285 0.9668
Beringer 364 27646 0.7412 0.7402 0.8073 0.8258 0.8451 0.7697 0.7865 0.8017

L1full 96 18736 0.5089 0.4968 0.5065 0.5497 0.6399 0.5089 0.5517 0.6430
Beringer + L1full 460 46382 0.6775 0.6763 0.7979 0.8147 0.8411 0.7434 0.7600 0.7907

PIG Training 318 50026 0.6688 0.6618 0.6640 0.6707 0.7011 0.6707 0.6770 0.7035
PIG 618 100040 0.6683 0.6641 0.6691 0.6841 0.7407 0.6750 0.6893 0.7436
All 1078 146422 0.7185 0.7162 0.7644 0.7755 0.7963 0.7350 0.7466 0.7752

Table 1. Five-fold cross-validation of CRF model using various evaluation methods and subsets of available corpora.

Weight Measure CRF HMM Diff.

Accuracy 0.6540 N/A N/A
F1 0.6507 N/A N/A

Weighted Mgen 0.6501 0.645 0.005
Mhigh 0.6869 0.710 -0.023
Msoft 0.8495 0.855 -0.006

Unweighted Mgen 0.6455 0.645 0.001
Mhigh 0.6849 0.710 -0.025
Msoft 0.8515 0.855 -0.004

Table 2. Comparison of our CRF model to the HMM from
Nakamura et al. [6], using PIG training and test datasets.

representations. Their model operates on data very similar
to a MIDI event stream. However, applying match rates as
they do presuppose a single piece with multiple associated
fingerings, and in some cases in the PIG Dataset, there is
no single representation of the score. There are multiple.
But only one of these representations, chosen arbitrarily, is
presented to the model for prediction. This is problematic.

This highlights a significant difference between the Layer
One corpus and the PIG Dataset: in Layer One, the chan-
nel assignment is implicit in the underlying score. It also
reflects a significant difference in how the two models na-
tively represent the problem space. Notably, both models
expect some sort of channel information as inputs. For our
CRF, this is a staff assignment, clearly an implicit attribute
of conventional musical notation. But for the HMM, it is
an explicit hand assignment.

Applying these match-rate metrics seems completely valid
only in cases where hand assignments are completely non-
controversial, where right-hand fingerings are segregated
to the upper staff and left-hand fingerings to the lower.

7. CONCLUSIONS AND FUTURE WORK

We have described a straightforward first-order CRF model
for predicting piano fingering decisions. It has demon-
strated performance comparable to that of a competing third-
order HMM system, and we contend that the flexibility and
discriminative nature of CRFs make them a better choice
for this domain, over more rigid generative models. We

have also described new corpora which may now be lever-
aged in the domain.

Simply augmenting the training data further could im-
prove system performance. But more valuably, the vari-
ous features of the model may be augmented and/or en-
hanced. Placing limits, as is done with the “leap” ceiling
for distance features, should be considered on all continu-
ous features. All features currently operate implicitly on a
single staff (and with one default hand in mind). Features
that consider complete vertical slices of notes are needed.
We also envision experiments with higher-level musical
concepts, such as the perceived chords or keys operating
among the notes surrounding each fingering decision. The
music21 library contains a wealth of possible features.

Automated feature selection and hyperparameter tuning
of the CRF are clearly in order, and we have already per-
formed promising preliminary experiments with higher-order
CRFs, using the PySeqLab package [35]. Finally, more
experiments are needed to confirm the strikingly positive
impact of rudimentary training data on model performance
observed in this study.
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