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Abstract—Visual Question Answering (VQA) concerns provid-
ing answers to Natural Language questions about images. Several
deep neural network approaches have been proposed to model
the task in an end-to-end fashion. Whereas the task is grounded
in visual processing, if the question focuses on events described
by verbs, the language understanding component becomes cru-
cial. Our hypothesis is that models should be aware of verb
semantics, as expressed via semantic role labels, argument types,
and/or frame elements. Unfortunately, no VQA dataset exists
that includes verb semantic information. Our first contribution
is a new VQA dataset (imSituVQA) that we built by taking
advantage of the imSitu annotations. The imSitu dataset consists
of images manually labeled with semantic frame elements, mostly
taken from FrameNet. Second, we propose a multitask CNN-
LSTM VQA model that learns to classify the answers as well
as the semantic frame elements. Our experiments show that
semantic frame element classification helps the VQA system avoid
inconsistent responses and improves performance.

I. INTRODUCTION

The goal of a Visual Question Answering (VQA) system is
to answer user questions about an image [1]. In order to train
neural-network based VQA models, many large-scale datasets
have been created [2]. We have observed that a large portion of
the questions available in current datasets, involve a verb other
than ”to be” (i.e. 42% of VQA dataset). Questions including
”to be” as the primary verb are usually about objects, object
attributes, object presence, object frequency, spatial reasoning
and so on. These questions appear to be more visually than
linguistically challenging. On the other hand, event verbs such
as cook or jump, inherently provide semantic information that
may help in answering questions about images describing such
events. Semantic information about verbs includes the type of
arguments a verb can take and how the arguments participate
in the event expressed by a verb, but this information is
missing in current VQA systems. We contend that, if a VQA
system is aware of such semantic information, it can not only
narrow down the possible answers but also avoid providing
irrelevant responses. For example, the answer to the question
”What is the woman cooking in the oven?”, should belong to
the food semantic category. However, neither do VQA datasets
encode, nor has any VQA system taken advantage of this
information.

The question is how to incorporate such semantic information
in VQA. Traditionally in linguistics, semantic information
about a verb has been captured via so-called thematic or se-
mantic roles [3], which may include roles like agent or patient
as encoded in a resource such as VerbNet [4]. Semantic role
labeling has been shown to improve performance in challeng-
ing tasks such as dialog systems, machine reading, translation
and question answering [5], [6]. However, the difficulty of
clearly defining such roles has given rise to other approaches,
such as the abstract roles provided by PropBank [7], or the
specialized frame elements provided by FrameNet [8]. In
FrameNet, verb semantics is described by frames or situations.
Frame elements are defined for each frame and correspond to
major entities present in the evoked situation. For example,
the frame Cooking creation has four core elements, namely
Produced food, Ingredients, Heating Instrument, Container.
In order to create a VQA dataset with verb semantic informa-
tion, we took advantage of the imSitu dataset [9], developed
for situation recognition and consisting of about 125k images.
Each image is annotated with one of 504 candidate verbs and
its frame elements according to FrameNet [8]. A sample of
images from the ImSitu dataset and their annotations can be
found in Table I.1

In this paper, we first show how we created the new imSi-
tuVQA dataset, by employing a semi-automatic approach to
create question-answer pairs derived from the imSitu dataset.
We have recently publicly released the imSituVQA dataset2.
Our second contribution is an augmented CNN-LSTM VQA
model with semantic frame element information in a multi-task
learning paradigm. The model is trained to classify answers as
well as semantic frame elements. The two classifiers share the
same weights and architectures up to the classification point.
The experiments show that the frame element classification
acts like a regularizer by reducing the inconsistencies between
the two members of the predicted <answer, frame element>
pair in order to provide accurate responses.

1imSitu substitutes some frame elements with more traditional thematic
roles, for example Agent for Cook.

2https://github.com/givenbysun/imSituVQA



cooking buying

Agent woman Agent boy Agent adolescent Agent woman
Food vegetable Food meat Goods book Goods shoe

Container pot Container wok Payment cash Payment credit card
Tool knife Tool spatula Seller Seller person

Place kitchen Place kitchen Place Place shoe shop

catching opening

Agent bear Agent ballplayer Agent person Agent cat
Caughtitem fish Caughtitem baseball Item can Item door

Tool mouth Tool baseball glove Tool can opener Tool paw
Place body of water Place outdoors

TABLE I
SAMPLE IMSITU ANNOTATIONS OF IMAGES ABOUT COOKING, BUYING, CATCHING AND OPENING. [9]

II. RELATED WORK

A. VQA Datasets

In order to train neural-network based VQA models, many
large-scale datasets have been created. Datasets differ based
on the number of images, the number of questions, complexity
of the questions, reasoning required and content information
included in the annotation for images, and questions. AQUAR
[10] is among the first benchmarks released for the VQA
task. It includes visual questions on color, number and
physical location of an object. In the COCO-QA dataset
[11] questions are generated from image captions describing
the image. The VQA dataset [1], among widely used
benchmarks, is a collection of diverse free form open ended
questions. Visual7w [12] is a dataset with the goal of providing
semantic links between textual descriptions and image regions
by means of object-level grounding. FVQA [13] primarily
contains questions that require external information to answer.

B. VQA Methods

Numerous baselines and methods have been proposed for
the VQA task. The VQA task requires co-reasoning over both
image and text to infer the correct answer. Most existing
methods formulate VQA as a classification problem and
impose the restriction that the answer can only be drawn from
a fixed answer space. The current dominant baseline method
proposed in [1] employs a CNN-LSTM-based architecture. It

consists of a convolutional neural network (CNN) to extract
image features and a long short term memory network (LSTM)
to encode the question features. The method fuses these two
feature vectors via an element-wise multiplication and then
passes the result vector through fully connected layers to
generate a softmax distribution over output answers.
The attention techniques learn to focus on the most discrimina-
tive regions rather than the whole image to guide the reasoning
for finding the answer. Different attention techniques, such
as stacked attention [14], co-attention between question and
image [15], and factorized bilinear pooling with co-attention
[16] have been shown to improve the performance of VQA.

III. THE IMSITUVQA DATASET

In this section, we first briefly expand on our earlier descrip-
tion of imSitu, and explain how question-answer templates are
generated. We then describe how they are filled with noun
values from the imSitu annotated images. The process results
in the creation of a new dataset, which we call imSituVQA.
As we noted, the imSitu dataset [9] is tailored to situation
recognition, a problem that involves predicting activities along
with actors, objects, substances, and locations and how they fit
together. imSitu utilizes linguistic resources such as FrameNet
and WordNet in order to define a comprehensive space of
situations. It provides representations helping to understand
who (AGENT) did what (ACTIVITY) to whom (PATIENT),
where (PLACE), using what (TOOL) and so on.



Verb Question Template Frame Element
Who is cooking? AGENT

What does the AGENT cook with TOOL? FOOD
cooking What is the AGENT doing? VERB

What does the AGENT use to cook in CONTAINER? TOOL
Where does the AGENT cook FOOD in CONTAINER? PLACE

Who is buying GOODS? AGENT
What is the AGENT doing? VERB

buying What item does the AGENT buy with PAYMENT? GOODS
Who does the AGENT buy GOODS from? SELLER

Where does the AGENT buy GOODS? PLACE
Who catches at PLACE? AGENT

catching What is the AGENT doing? VERB
What item does the AGENT catch with TOOL? CAUGHTITEM
Where does the AGENT catch CAUGHTITEM? PLACE

What does the AGENT use to open ITEM? TOOL
opening Who opens ITEM? AGENT

What item does the AGENT open? ITEM
Where does the AGENT open ITEM with TOOL? PLACE

TABLE II
A SUBSET OF QUESTION ANSWER TEMPLATES GENERATED FOR COOKING, BUYING, CATCHING AND OPENING.

Every situation in imSitu is described with one of 504 can-
didate verbs such as cook, play, tattoo, wash, teach and so
on. Each verb has a set of FrameNet related frame elements3:
for example, Sr(cooking) ={ AGENT, FOOD, CONTAINER,
HEATSOURCE, TOOL, PLACE } indicates semantic frame
elements of the verb cooking. This set is also expressed
by an abstract definition: ”an AGENT cooks a FOOD in
a CONTAINER over a HEATSOURCE using a TOOL in a
PLACE”. imSitu includes 190 unique frame elements, some
shared among verbs such as AGENT and some verb specific
such as PICKED∈ Sr(PICKING).
Every image is labeled with one of 504 candidate verbs along
with frame elements filled with noun values from WordNet.
If an element is not present in the image its value is empty.
There are about 250 images per verb and 3.55 frame elements
per verb on average.

A. Question answer template generation

Before template generation, we mapped every frame el-
ement to a question word, for example, AGENT to who,
LOCATION to where, ITEM , FOOD and PICKED to what
item, TOOL to what does [AGENT] use to and so on. From 190
unique frame elements, 47 were mapped to who, 19 mapped
to where, 53 mapped to what and the remaining were mapped
to a question word starting with what such as what item.
There are 504 abstract definitions, each expressing a verb with
its frame elements in a sentence. Given an abstract definition,
we hold out one element as output frame element and use
the remaining ones in order to generate question templates.
For example, for cook the abstract definition is ”an AGENT
cooks a FOOD in a CONTAINER over a HEATSOURCE
using a TOOL in a PLACE”. If we hold out FOOD then
what remains is ”an AGENT cooks [X] in a CONTAINER
over a HEATSOURCE using a TOOL in a PLACE”. We

3As noted earlier, some are traditional thematic roles such as AGENT and
not the corresponding FrameNet frame elements.

created a recursive template question generation procedure that
produces all possible combinations. For example, asking about
FOOD requires templates staring with the ”What ...” question
word, then including or excluding other frame elements in the
question results in different possible questions: ”What does
AGENT cook?”, ”What does AGENT cook with TOOL?”,
”What does AGENT cook in CONTAINER?” and so on. One
advantage of this process is to generate many training samples
useful for training deep models. A subset of templates for
cooking, buying, catching and opening are shown in Table II.
The abstract definitions for buying, catching and opening are:
”AGENT buys GOODS with PAYMENT from the SELLER in a
PLACE” , ”an AGENT catches a CAUGHTITEM with a TOOL
at a PLACE” and ”the AGENT opens the ITEM with the TOOL
at the PLACE”. In total, 6879 templates are generated, with
on average 13.65 question-answer templates per verb.

1) Question answer pair realization: The template genera-
tion is based on 504 abstract definitions of the verbs. In order
to build the real imSituVQA dataset, image annotations are
used to substitute the frame elements in the templates. Each
image is annotated with a verb and its frame elements with
their fillers. Table I shows an example of such annotations
for cooking, buying, catching and opening. All templates of a
verb can be instantiated by filling frame elements with noun
values from the annotation. If a verb has n templates, applying
an image annotation results in n real <question, answer>
samples of the image. Table III shows VQA samples for
cooking, buying, catching and opening. This way, the size
of the extracted dataset is the average number of templates
times the number of images. This realization process results
in 254k train, 88k development and 88k test samples. For the
training set, the top 10 most frequent frame element classes
among the existing 190 are shown in Table IV. Table V
also shows the top 10 frequent answers. Because 60% of
answers are about place and agent, the most frequent answers
are usually values from these two frame elements. Figure 2



IMAGE about cooking IMAGE about buying

QUESTION ANSWER FRAME QUESTION ANSWER FRAME
ELEMENT ELEMENT

Who is cooking? boy AGENT Who is buying shoes? woman AGENT
What does the boy cook with spatula? meat FOOD What is the woman doing? buying VERB

What is the boy doing? cooking VERB What item does the woman buy shoe GOODS
What does the boy use to cook in wok? spatula TOOL with credit card?
Where does the boy cook meat in wok? kitchen PLACE who does the woman buy shoe from? person SELLER

where does the woman buy shoe? shoe store PLACE

IMAGE about catching IMAGE about opening

QUESTION ANSWER FRAME QUESTION ANSWER FRAME
ELEMENT ELEMENT

who catches at body of water? bear AGENT what does the cat use to open the door? paw TOOL
what is the bear doing? catching VERB who opens the door? cat AGENT

where does the bear catch fish? body of water PLACE what item does the cat open? door ITEM
what item does the bear catch? fish CAUGHTITEM

with mouth?

TABLE III
IMSITUVQA DATASET SAMPLES ABOUT COOKING, BUYING, CATCHING AND OPENING.

depicts the distribution of question template lengths in terms
of the number of words. The questions are mostly between
4 to 7 words. Figure 1 shows the distribution of imSituVQA
questions according to the first question word. As can be seen
”Where” is more frequent than ”Who” and ”What”. This
derives from place being the most frequent frame element,
twice as frequent as agent, which is the second.

IV. OUR VQA MODEL

Hyper-class augmented deep learning model has been
shown to work well for fine-grained image classification.
Instead of fine tuning a convolutional neural network (CNN) ,
[17] suggests a hyper-class augmentation formulated as multi-
task learning in order to boost the recognition task. Similarly,
we include frame element classification in parallel with answer
classification.

Fig. 1. Distribution of questions in imSituVQA.



Fig. 2. Distribution of questions in imSituVQA based on length.

Frame element frequency
PLACE 100,006
AGENT 49,976
ITEM 24,376
TOOL 13,908

VICTIM 3,932
TARGET 3,860
VEHICLE 3,706

DESTINATION 3,238
COAGENT 2,544
OBJECT 2,317

TABLE IV
TOP 10 FREQUENT FRAME ELEMENTS IN IMSITUVQA TRAINING

SAMPLES.

Answer frequency
outdoors 14,621

man 13,527
woman 10,763
people 9,228
room 8,323

outside 6,881
inside 6,679
person 5,625
hand 4,238
field 3,086

TABLE V
TOP 10 FREQUENT ANSWERS IN IMSITUVQA TRAINING SAMPLES.

Let Dt = {(xt1, y
t
1), ..., (x

t
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t
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question> pair xti , and let Da = {(xa1 , r

a
1 ), ..., (x

a
n, r

a
n)}

be a set of auxiliary frame element information, where
ri ∈ {1, ..., R} indicates the frame element class of <image,
question> pair xta (e.g., AGENT, FOOD and PLACE). The
goal is to learn a VQA model that correctly answers to an
input <image, question> pair. In particular, we aim to learn
a prediction function given by Pr(y|x), i.e., given the input
x:<image, question> pair, we compute the probability that
y is the answer. Similarly, we let Pr(r|x) denote the frame

element classification model. Given the training <image,
question> pairs and the answers with auxiliary frame element
information, our strategy is to train a multi-task deep model.
This model uses a shared CNN-LSTM VQA architecture up
to the classification layer. Then sharing common features,
it branches out to two different classifiers. One classifier
classifies answers, and the other one, frame elements. Figure
3 summarizes the proposed multi-task learning model. In order
to train the proposed VQA model, the total loss is the average
of losses from these two classifiers.

V. EVALUATION

A. Experimental Setup

The proposed VQA model is evaluated by means of
the CNN-LSTM-based architecture introduced in [18].
Training deep models requires significant time and resources.
Consequently, we employ trained models such as GLOVE
[19] and VGG-NET [20]. GLOVE provides a good word
embedding layer initialization that generalizes well and
provides a performance boost. GLOVE 300-dimensional
weights are utilized in order to feed question words to a
bidirectional long short term memory network (LSTM).
The output of the LSTM is a 300 dimension question
embedding which is mapped to 1024 dimensions by passing
through a nonlinear layer. A VGG-NET-16 pre-trained model
was used in order to extract image feature vectors. The
4096 image embedding is mapped to 1024 dimensions by
passing through a nonlinear layer. The multimodal fusion
of image and question embeddings occurs via pointwise
multiplication, then after passing through two nonlinear
layers with tanh activation function, the final embedding
is fed to the frame element softmax layer and the answer
softmax layer. The model is trained by minimizing the sum
of the two cross-entropy loss functions using the rmsprop
optimization algorithm [21]. The training data is passed with
a batch size of 500 in 50 epochs.

B. Results and Discussions

Table VI shows the performance evaluation of the test
samples. Using the most frequent answer (prior) in order
to answer each question results in 5.65% accuracy. Select-
ing the most frequent answer per verb results in 22.15%
accuracy. The CNN-LSTM model was trained with single
answer softmax (39.58% accuracy) and multi-task, including
both answer softmax and frame element softmax (44.90%
accuracy). Augmenting VQA with frame element information
boosts the accuracy up to 5%. This improvement in the
generalization of the CNN-LSTM model indicates how well
the multi-task approach acts like a regularizer. A chi-square
test was performed in order to show statistically significant
improvement of the model (Table VII).
Performance can be compared in terms of WUPS as well.
Wu-Palmer (WUP) Similarity can be used as an alternative
to accuracy [22]. [23] extended WUP similarity to the VQA



Fig. 3. Proposed multitask learning architecture for VQA

Accuracy (%) WUPS at 0.9 (%)
prior (”outdoors”) 05.68 11.87

per verb prior 22.15 27.65
CNN-LSTM 39.58 46.92

multi-task CNN-LSTM 44.90 51.83

TABLE VI
PERFORMANCE OF OUR VQA MODEL ON IMSITUVQA DATASET

task evaluation. WUP is based on how the predicted answer se-
mantically matches the ground truth. Given a predicted answer
and a ground truth answer, WUPS computes a value between
0 and 1 based on their similarity. It computes similarity by
considering the depths of the two synsets in WordNet, along
with the depth of the LCS (Longest Common Subsumer).
WUPS is computed based on WUP. Given N number of
samples with A being the ground truth answers and T predicted
answers, the formula is as follows:

WUPS(A, T) =
1

N

N∑
i=1

min

{
∏
a∈Ai

max
t∈Ti

WUP(a, t),
∏
t∈Ti

max
a∈Ai

WUP(a, t)}.100 (1)

Here are some examples of the pure WUP score to give
intuitions about the range: WUP(outside, outdoors) =
0.92, WUP(man,woman) = 0.07, WUP(land,earth) = 1.0
WUP(tree,water)= 0.14 and WUP(dog,wolf) = 0.93.

”WUPS at 0.9” applies a threshold and considers a
predicted answer correct if the WUPS score is higher than
0.9. ”WUPS at 1.0” corresponds to accuracy and [23] found
that for VQA tasks a WUP score of around 0.9 is required
for precise answers. Table VI shows performance in terms
of ”WUPS at 0.9”. The improvement based on WUPS,

using multi-task approach, is almost similar to that based on
accuracy.
The accuracy of frame element classification is initially
90% and gets up to 99.68% at the end of the training. The
performance on test data is 99.32%. This improvement,as we
will discuss later, helps the model to provide more consistent
responses and to regularize the model.

Fig. 4. Evaluation by wh-question type of the question



Correct Incorrect
CNN-LSTM 34905 53065

multi-task CNN-LSTM 39522 48448

TABLE VII
THE CHI-SQUARE STATISTIC IS 496.1854. THE P-VALUE IS < 0.01 AND

THE RESULT IS SIGNIFICANT.

Frame element classification: The hyper-class
augmentation model utilizes frame element classification for
better representation learning of the VQA task. As discussed
earlier, the accuracy of the frame element classification is
99.32%. One important reason for such high performance is
the frame element dependency on the input question while
it is independent of the input image. For example for the
question ”who is cooking ?” the frame element is always
AGENT for all images about cooking. This results in a huge
amount of data to train the frame element classification
resulting in almost perfect performance.
It is interesting to know how frame element classification
affects the predicted answer and how consistent it is with the
correct answer and predicted answer. We consider the correct
or predicted answer to be consistent with the frame element
if there is at least one training sample labeled with both the
answer and the frame element. For example <bear, AGENT>
and <bear, CHASEE> are consistent but <bear, PLACE>
and <bear, TOOL> are inconsistent. Figure 5 shows the
frequency of distinct frame elements for a subset of answers.
For example man, car, telephone, bear and cafe are fillers of
81, 37, 20, 8 and 1 distinct frame elements in the training
samples respectively. An answer is consistent with the set of
distinct frame elements it fills and inconsistent with others.
The almost perfect accuracy of the frame element classifier
confirms its output is almost always consistent with the
correct answer. Now the question is, how much does
frame element classification help the predicted answer to
be consistent with the semantic frame? Employing the
consistency criterion, the consistency of the CNN-LSTM
model is 97.56% and multi-task CNN-LSTM 99.94%. This
shows a 2.38% improvement. In other words, augmenting
the frame element classification decreases inconsistency in
providing final responses. Consequently, the end-user would
get more reasonable answers from the system.

Fine-grained evaluation. In order to perform a fine-grained
analysis of the results, performance per question, per verb
and per role are computed. Figure 4 shows a performance
comparison based on the wh-question type of the question.
Multi-task CNN-LSTM performs better for who (4%), what
(8%) and where (5%) when compared to CNN-LSTM. Explor-
ing performance per verb, we can see for example cooking
improves from 30.12% to 44.58% and buying from 27.42%

to 64.52%. Exploring performance per role, for example,
the multi-task approach improves AGENT from 48.78% to
52.29%, PLACE from 34.75% to 39.52% and ITEM from
32.27% to 39.65%. Table VIII shows a different view of the
performance difference between CNN-LSTM and the multi-
task version. About 55% of verbs improve by less than 10%.
whipping, buying, sketching, scooping, making improve by
more than 30%. spanking, ejecting, farming, hitting, harvest-
ing, moistening decline by more than 15%.

Accuracy Verb Role
Difference Frequency Frequency

Range
(-40%,-30%] 3
(-30%,-20%] 2 3
(-20%,-10%] 10 5
(-10%,0%) 67 24

0% 27 32
(0%,10%] 269 68

(10%,20%] 100 24
(20%,30%] 15 13
(30%,40%] 6
(40%,50%] 4
(50%,60%] 2

...
100% 1

TABLE VIII
PERFORMANCE EVALUATION GROUPED BY PERFORMANCE INTERVALS
SHOWING VERB FREQUENCY AND ROLE FREQUENCY IN EACH GROUP.

VI. CONCLUSIONS

In this paper, we explained how we used the imSitu
annotations to build a VQA dataset with semantic verb
information. Furthermore, we proposed a multitask learning
approach in order to augment a CNN-LSTM VQA model.
The approach boosts performance and shows the benefit of
using verb semantics in answering questions about images.
The proposed model utilizes semantic frame elements in order
to answer the input question about the image. We evaluated
the proposed model showing 5% improvement in accuracy
and ”WUPS at 0.9”.
We provided a justification of why the proposed hyper-class
augmentation idea works and also explored its effect through
different analysis. However additional theoretical analysis
would enrich the proposed VQA model and system. One
hypothesis would be to consider the semantic information
equivalent to context or context-aware information [24] [25].
In this work we created a VQA dataset where questions are
annotated with precise frame element information. Another
approach would be to employ a semantic role labeling model
in order to approximately extract frame element information
for any question of an available VQA dataset, and then
explore how frame element augmentation would work.
The hyper-class augmentation is a novel technique in the
context of VQA. This idea can be generalized by augmenting
the VQA models with answer types, task types, and other
auxiliary information by means of the multi-task learning



Fig. 5. Distinct frame element frequency for different answers.

paradigm.
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