

TensorFlow Enabled i2b2 Emulator

Xiao Dong1 PhD, Eugene M. Sadhu1 MD, Subhash Kolar Rajanna1 MD,

David A. Randolph1 MEng, Edward Barbour1 MS
1Center for Clinical and Translational Science, University of Illinois at Chicago

Introduction

i2b21 is an open source software product deployed in many academic medical centers across the country.

Typical data dimensions incorporated into i2b2 include clinical and administrative data from electronic

medical record systems, diagnosis and procedure codes from billing systems, tissue data from bio-

repositories and genetic information. The primary use of i2b2 is cohort identification. Its prevalence and rich

data elements made it an appealing target for the purposes of predictive analytics and deep learning.

Deep learning has recently become the paradigm of choice to empower successful artificial intelligence (AI)

systems. Two key factors attributed to its groundbreaking success are: first, large enough datasets suitable

for neural network analysis finally becoming available; second, hardware platforms that accelerate

computation have become widely adopted, such as NVIDIA’s Graphical Processing Unit2 (GPU). In

medicine, deep learning’s primary contributions to date have been in image analysis, notably in lesion

analysis for skin cancer classification2 and histopathologic slide analysis for prostate cancer diagnosis3.

In this work we demonstrate the feasibility of replacing i2b2’s relational database backend with a deep

learning-derived backend. TensorFlow is a popular deep learning framework developed by Google for deep

neural network and machine learning projects. TensorFlow uses a computation graph with nodes representing

operations and edges, tensors. Many common data models (such as i2b2, OMOP, PCORNet) are EAV based

(entity-attribute-value). For a production i2b2 instance, the set of concepts (attributes) may easily number in

the hundreds of thousands, typically including ICD, CPT, LOINC, RxNorm and SNOMED codes. Our main

intuition to adopt TensorFlow arose from the insight that EAVs such as rows in i2b2’s “observation fact”

tables may be represented as a 2D sparse tensor, the dense format of which maps all the concepts onto the

row axis and the encounters onto the column axis. The SQL operations are then expressed as operations such

as matrix multiplication and element-wise array operations. The result is a system which allows the regular

cohort identification queries to be seamlessly emulated using TensorFlow, while also opening up the

environment to benefit from the built-in GPU acceleration and the rich set of predictive analytics and deep

learning tools in the TensorFlow ecosystem.

Methods

The first step is to transform the i2b2 data into a tensor format. The main data content of the i2b2 data mart

resides inside one or more “observation fact” tables. To construct the aforementioned 2-dimensional sparse

tensor, we first enumerate the encounters, encoding each as an integer. Similarly we enumerate the universe

of concept codes, thus mapping each row of observations to an encounter-concept index pair [x,y]. The value

associated with the observation fact is encoded in the following manner: for boolean, nominal concepts such

as diagnosis and procedure codes, we set the value to 1; for numerical values such as lab tests or vitals, the

value is conserved as is; finally, for categorical or ordinal values represented as text such as urine color, when

the number of categories is <64, we map each to a bit position, and if ≥64, each is mapped onto consecutive

integers beginning with 1. (We note that we could have chosen to further enrich the data by incorporating the

modifier codes, such as primary or secondary diagnosis via construction of additional compound concepts.)

Such indices [x, y] along with the encoded observation values are fed into the sparse tensor constructor. We

emphasize the importance of using a sparse tensor due to two reasons: first, the excellent computational speed

achieved through TensorFlow’s built-in special operations on them; second, the underlying layout of

observation fact data is basically a sparse tensor data structure thus making the data conversion effort trivial.

The following simple illustration demonstrates the utility of tensor operations.

The 2-dimensional tensor is a simplified dense tensor representation of 5

encounters and 4 concepts after performing the above transformation. Suppose

the concepts consist of ICD-9 codes with two asthma ICD-9 codes (e.g. 493.20,

493.90) corresponding to the 1st and 3rd elements. A query for those two asthma [

1 1 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 1]

∙ [

1
0
1
0

] =

[

2
0
0
1
0]

codes is represented as the 1-dimensional tensor with 1st and 3rd element set to 1, and the product represents

the number of matching criteria by encounter. The next step is to emulate regular query executions by

composing computation graphs that perform tensor operations. To illustrate, we use the following example:

“find all the asthma patients who had a visit between 2016 and 2017 and whose hemoglobin and BMI are

both within the normal range”. To compute the solution, four consecutive steps are composed: diagnosis

attrition, lab and vital value attrition, and visit time attrition.

Numerical comparisons needed

for lab and vital attritions were

achieved using greater and less

than operations. Since

TensorFlow does not natively

support time comparison, the

admit time was encoded as a 64

bit integer. All four attrition

operations yield one-dimension

tensors that have the exact same

size – the total number of

encounters. Element-wise array

operations were used to generate

the final result. Since

TensorFlow also supports

Logical OR and NOT, all query

constructs in i2b2 may be

emulated. Figure 1 illustrates the

computation graph for the

example. Figure 1. Computational graph to emulate the example query,

generated using TensorBoard

Results

Using the methods explained in this paper, we found a computation graph may be composed using tensorflow

operators to emulate any i2b2 query pattern, indicating a TensorFlow computation graph composer may be

integrated directly into the i2b2 as a drop-in replacement for the relational query engine while keeping front-

end and middle-ware layers intact. We have implemented TensorFlow graphs like the one illustrated in Figure

1 on a mid-grade system with a NVIDIA GTX 6GB GPU. As a result, we have a dual-purpose system that is

not only capable of supporting regular queries, but also deep learning enabled. We are currently developing

meaningful use cases such as generating high quality synthetic data using encoder-decoder RNN.

Discussion

Although our approach is presented in the context of i2b2, it generalizes and is applicable to many other

datamarts such as OMOP and PCORNet. The key insight is that since these datamarts all employ the common

underlying data structure of [encounter, concept, value], their data contents can be converted directly into

sparse tensor format. The future direction for this work is twofold: 1) develop a CRC cell plugin to

automatically compose TensorFlow computation graphs, allowing the i2b2 application to run directly on a

deep learning enabled backend; 2) utilize the rich set of technical assets in the TensorFlow eco-system to

enhance i2b2 with cutting-edge predictive analytics and deep learning capabilities.

References

1. Murphy S, Mendis M, Berkowitz D, et al. Integration of clinical and genetic data in the i2b2 architecture.

AMIA Annu Symp Proc. 2006:1040.

2. Esteva A, Kuprel B, Novoa R, et al. Dermatologist-level classification of skin cancer with deep neural

networks. Nature. 2017;542:115-8.

3. Litjens G, Sánchez C, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency

of histopathological diagnosis. Scientific Reports. 2016;6.

